

Indo-European dialogue on ICT standards & Emerging Technologies (Growth, Profitability & Nation Building) 13-14th March 2014 New Delhi, INDIA

IN THE FRAMEWORK OF

Project

http://eustandards.in/

IMROVING RADIO SEPCTRUM EFFICIENCY

Presented by Jamshid Khun-Jush: Senior Director, Qualcomm

Insert your logo here right click> change picture

Presentation Outline

- Basics of Reconfigurable Radio Systems
- ❖ 1000x Spectrum Challenge: Authorized Shared Access
- TV UHF Band: Current Status and Future
- ANNEX 1: RRS Regulations and Standards in Europe
- **ANNEX 2: ASA Details**

Indo-European dialogue on
ICT standards & Emerging Technologies
13-14th Morch 2014 New Delhi, INDIA

Basics of Reconfigurable Radio Systems

Indo-European dialogue on
ICT standards & Emerging Technologies
13-14th Morth 2014 New Delhi, INDIA

Insert your logo here right click> change picture

Reconfigurable Radio Systems: Basics - 1

- Reconfigurable Radio Systems (RRS)
 - Generic term for radio systems encompassing Software Defined Radio (SDR) and/or Cognitive Radio (CR)
 - Licensed Shared Access (LSA) is addressed in Europe as RRS, although it is neither SDR nor CR
- Software Defined Radio:
 - ❖ RF operating parameters including, but not limited to, frequency range, modulation type, or output power can be set or altered by software, and/or the technique by which this is achieved
 - Multi-mode/band 3G/4G systems already provide several such features

Reconfigurable Radio Systems: Basics - 2

- Cognitive Radio System has following capabilities
 - To obtain the knowledge of radio operational environment & established policies and to monitor usage patterns & users' needs
 - To dynamically and autonomously adjust its operational parameters and protocols according to the obtained knowledge in order to achieve predefined objectives, e.g. more efficient utilization of spectrum
 - Current mobile systems already posses such capability
 - ❖ To learn from the results of its actions in order to further improve its performance

1000x Spectrum Challenge: Authorized Shared Access

Indo-European dialogue on
ICT standards & Emerging Technologies
13-14th March 2014 New Delhi, INDIA

Insert your logo here right click> change picture

Mobile data growth— 1000x challenge

Exponential wireless data growth in the past decade

Means to meet 1000x mobile data growth - 1

- More spectrum allocation (higher bps)
 - Flexible bandwidth, spectrum aggregation, supplementary downlink,
- Improved spectral efficiency (higher bps/Hz)
 - Air interface evolution (different MIMO versions, high level modulation), interference management/Self Organizing Networks
- ❖ Network densification / Intelligent access to 3G/4G/RLAN (higher bps/Hz/km²)
 - HetNet, small cells everywhere

Means to meet 1000x mobile data growth - 2

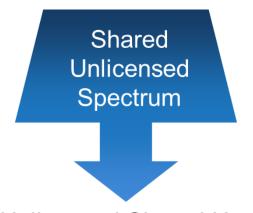
- We are heading towards even faster growth in wireless data consumption in the next decade
- *Key measures to meet 1000x mobile data growth
 - Network densification and spectrum allocation
- Assuming network densification and improved spectral efficiency cater for ~100x data growth
 - ❖ Need for ~10x more spectrum
 - An approach only based on clearing spectrum for exclusive use, most likely very difficult even within a reasonable time frame
 - ❖ Need for multiple efforts to get access to spectrum

Multiple Efforts to Access more Spectrum

Exclusive Licensed Spectrum

Exclusive Use 3G/4G

Most efficient use of spectrum for mobile broadband


Industry's Top Priority for Quality of Service, mobility and control

Shared Licensed Spectrum

Authorized Shared Access Use Complementary for 3G/4G

Unlocks licensed spectrum for partially occupied government bands

Enable use of encumbered spectrum with predictable QoS when and where not used by incumbent

Unlicensed Shared Use WiFi, BT, LTE-U & others

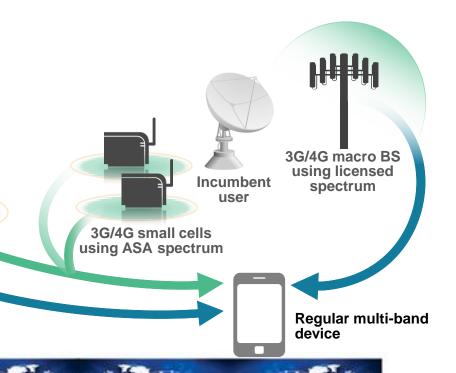
Unpredictable QoS, ideal for local area access and opportunistic traffic offload

Maximize unlicensed spectrum benefits, where possible

Network deployment in ASA model

Exclusive use

- At given locations/times ensures predictability for longterm investments
- LSA target bands:
 - Already globally allocated to IMT but not cleared due to incumbents
 - No device impact, just regular 3G/4G devices supporting globally harmonized band


3G/4G macro base station using licensed/ASA spectrum

Protect incumbents

- Binary use: either incumbent or operator
- Protection zones required
 - The higher frequency range, the smaller protection distance

Optimal for small cells

- Small cells can be closer to incumbent than macros
 - Higher frequency ranges optimal targets for ASA, e.g. 2.3 GHz, 3.5 GHz

Indo-European dialogue on ICT standards & Emerging Technologies

Insert your logo here right click > change picture

TV UHF Band: Current Status and Future

Indo-European dialogue on
ICT standards & Emerging Technologies
13-14th Morth 2014 New Delhi, INDIA

Insert your logo here right click> change picture

"TV UHF" frequency band in CEPT - 1

- Frequency range 470-862 MHz ideal for rural area coverage
 - ❖ Frequency range 790 862 MHz has been already cleared for IMT
 - ❖ Frequency range 694 790 MHz is about to be cleared for IMT
 - ❖ 698 806 MHz is designated by AWG for IMT/mobile (LTE Band 28)
- Future evolution of mobile and TV terrestrial broadcasting
 - Broadcast community currently considers defining a "world standard"
 - ❖ A big portion of 1000x mobile data growth will be TV & video content
 - Unclear if the two communities could bring about a closer alignment between the two services
- Future use of TV spectrum depends on this evolution
 - ❖ I.e. anew spectrum division between TV and mobile or Joint spectrum use by them

"TV UHF" frequency band in CEPT - 2

- CEPT has published several reports on the operation of Cognitive Radio Systems in the "White Spaces" of the Frequency Band 470-790 MHz (see ANNEX 1)
 - Besides in the UK, the reports didn't get any considerable traction
 - Even in the UK, the industry divided on CRSs in TV WS
- The main reason
 - Drawbacks of unlicensed operation of CRS in TV band WSs

Unlicensed operation of CRS in TV band WSs - 1

- Main drawbacks
 - From a "frequency engineering" perspective
 - Need for **very big protection zones** to manage the interference resulting in inefficient frequency reuse
 - To avoid this disadvantage, the **transmit power needs to be**considerably limited (short range communications) which fully
 contradicts to the advantage of using lower frequencies
 - ❖ Uncontrolled interference results in low level QoS guarantees and hence in low incentives for MNOs to make long term investments

Unlicensed operation of CRS in TV band WSs - 2

- Main drawbacks (cont'd)
 - From a "frequency management" perspective
 - ❖ Different CEPT countries have different TV WSs fostering **fragmented** use of this valuable frequency in CEPT to disadvantage of **harmonised** use
 - This will have adverse effects in terms of **global harmonised use** of this band and **global roaming** of mobile devices
 - From a "frequency need" perspective:
 - Given enormous mobile data grow consisting of TV and video content, the need for **dedicated spectrum** for mobile will dramatically increase
 - Especially lower frequency ranges very valuable to master digital divide between rural and urban areas, particularly in developing countries
 - Unlicensed use of this spectrum essentially devalues it

Thank Your

Indo-European dialogue on ICT standards & Emerging Technologies

13-14th March 2014 New Delhi, INDIA

Insert your logo here right click>change picture

ANNEX 1: RRS Regulations and Standards in Europe

Indo-European dialogue on
ICT standards & Emerging Technologies
13-14th March 2014 New Delhi, INDUA

Insert your logo here right click> change picture

RRS at ETSI - 1

- ❖ Technical Committee RRS responsible for developing standards for radio systems addressing SDR and CR
 - The work mainly focused on CR
 - Several Technical Specifications / Reports have been developed
 - CR systems mainly restricted to White Space Devices (WSD) in the TV UHF band 470-790 MHz (TV WSD)
 - Technical Committee BRAN developed a Harmonised Standard for TV WSD, currently under national voting
 - Very limited interest, driven only by the UK, although controversial even there

RRS at ETSI - 2

- TC RSS added Licensed Shared Accept to its scope
 - ❖ A System Reference Document developed as input to CEPT
 - Outlining market perspectives, main technical characteristics, high-level system architecture and required regulatory changes
 - Currently limited to 2300-2400 MHz frequency band
 - Development of a Technical Specification on detailed technical and operational requirements in the final phase
 - ❖ The work on a Technical Specification for defining detailed architecture and required interfaces has just started

RRS in Europe: EC Mandate

- ❖ EC issued Mandate M/512 on RRS with 3 Objectives to ESOs (European Standards Organizations) in 2013
 - ❖ ETSI as the main relevant ESO for this mandate accepted M/512 and selected TC RRS as the responsible body
 - ❖ Objective A: for the Commercial Domain to enable the deployment and operation of CRS including WSD and devices under LSA*
 - ❖ Objective B: for the **Civil Security and Military Domain** to ensure the standardization of suitable SDR architecture(s) (on hold)
 - Objective C: to explore potential areas of synergy among commercial, civil security and military applications

*It is a misconception, since LSA devices don't use any CR feature and are just regular 3G/4G devices supporting bands target for LSA

RRS in Europe: CEPT deliverables on TV WSD

- CEPT published the ECC Report 159 in January 2011
 - ❖ Technical and Operational Requirements for the Possible Operation of Cognitive Radio Systems in the "White Spaces" of the Frequency Band 470-790 MHz
- ❖ CEPT subsequently developed ECC Reports 185 and 186 as complementary studies to ECC Report 159 in January 2013
 - In particular, the geo-location approach is considered in more details in ECC Report 186
- Besides the UK, no other CEPT country took any action based on these reports/studies
 - Even in the UK industry divided on the TV WSD concept

RRS in Europe: CEPT deliverables on LSA

- CEPT approved the publication of ECC Report 205 on LSA
 - The Report defines LSA and provides guidelines to CEPT administrations on how to implement it.
- CEPT released for public consultation the draft ECC Decision on harmonised technical and regulatory conditions for the use of the band 2300-2400 MHz
 - The Decision recognizes LSA as THE CEPT regulatory provisions for administrations wishing to maintain current incumbent use and to ensure the long term use of the band by incumbent
 - ❖ In some countries, e.g. France, the administrations have started with the definition of details for regulatory provisions to implement LSA

ANNEX 2: LSA Details

Indo-European dialogue on ICT standards & Emerging Technologies

13-14th March 2014 New Delhi, INDIA

Insert your logo here right click> change picture

ASA: A new framework to unlock spectrum for 1000x capacity in mobile broadband

Jamshid Khun-Jush: Senior Director, Qualcomm Helsinki-Finland, September 3, 2013

Qualcomm:
Standards &
Industry Organizations

Presentation to ASA/LSA workshop Organized by Tekes' Trial-Programme and COST-TERRA

